Definition.is_max_equi
is_max R y A ↔ y ∈ A ∧ ∀x. x ∈ A → R x y
Definition.is_min_equi
is_min R y A ↔ y ∈ A ∧ ∀x. x ∈ A → R y x
Definition.is_supremum_equi
is_supremum R M y A ↔
(∀x. x ∈ A → R x y) ∧
(∀b. b ∈ M → (∀x. x ∈ A → R x b) → R y b)
Definition.is_infimum_equi
is_infimum R M y A ↔
(∀x. x ∈ A → R y x) ∧
(∀b. b ∈ M → (∀x. x ∈ A → R b x) → R b y)
Partial orders
Definition.po_equi
partial_order R M ↔
(∀x. x ∈ M → R x x) ∧
(∀x. ∀y. x ∈ M → y ∈ M → R x y → R y x → x = y) ∧
(∀x. ∀y. ∀z. x ∈ M → y ∈ M → z ∈ M → R x y → R y z → R x z)
Theorem.po_antisym
partial_order R M → x ∈ M → y ∈ M →
R x y → R y x → x = y
Theorem.po_trans
partial_order R M → x ∈ M → y ∈ M → z ∈ M →
R x y → R y z → R x z
Power set lattice
Theorem.incl_Knaster_Tarski_least
set a → map f (power a) (power a) →
(∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) →
∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → u ⊆ x)
Theorem.incl_Knaster_Tarski_greatest
set a →
map f (power a) (power a) →
(∀x. ∀y. y ⊆ a → x ⊆ y → app f x ⊆ app f y) →
∃u. u ⊆ a ∧ app f u = u ∧ (∀x. x ⊆ a → app f x = x → x ⊆ u)
Well-founded relations
Definition.wf_equi
wf R M ↔ ∀A. A ⊆ M → ¬A = ∅ →
∃y. y ∈ A ∧ ¬∃x. x ∈ A ∧ (x, y) ∈ R
Theorem.wf_unfold
wf R M → ∀A. A ⊆ M → ¬A = ∅ →
∃y. y ∈ A ∧ ¬∃x. x ∈ A ∧ (x, y) ∈ R
Theorem.wf_induction_set
wf R M → A ⊆ M →
(∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → y ∈ A) → x ∈ A) → A = M
Theorem.wf_induction
wf R M →
(∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → P y) → P x) →
(∀x. x ∈ M → P x)
Theorem.wf_rec_unique
wf R X → dom R ⊆ X → map f X Y → map g X Y →
(∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x}))) →
(∀x. x ∈ X → app g x = φ x (restr g (inv_img R {x}))) →
f = g
Theorem.wf_rec_existence
set X → set Y → wf R X →
dom R ⊆ X → (∀x. ∀g. φ x g ∈ Y) → ∃f. set f ∧ map f X Y ∧
∀x. x ∈ X → app f x = φ x (restr f (inv_img R {x}))
The natural numbers as ordinals
Definition.onat_eq
onat = ⋂{A | ∅ ∈ A ∧ ∀n. n ∈ A → n ∪ {n} ∈ A}
Theorem.onat_induction_sets
A ⊆ onat → ∅ ∈ A →
(∀n. n ∈ A → succ n ∈ A) → A = onat
Theorem.onat_induction
P ∅ → (∀n. n ∈ onat → P n → P (succ n)) →
(∀n. n ∈ onat → P n)
Closure operators
Definition.clop_equi
closure_operator H U ↔
set U ∧ map H (power U) (power U) ∧
(∀X. X ⊆ U → X ⊆ app H X) ∧
(∀X. ∀Y. X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y) ∧
(∀X. X ⊆ U → app H (app H X) ⊆ app H X)
Definition.closure_system_equi
closure_system M U ↔
M ⊆ power U ∧ U ∈ M ∧ ∀T. T ⊆ M → ¬T=∅ → ⋂T ∈ M
Theorem.clop_app_in_cod
closure_operator H U → X ⊆ U →
app H X ⊆ U
Theorem.clop_extensivity
closure_operator H U →
X ⊆ U → X ⊆ app H X
Theorem.clop_monotony
closure_operator H U →
X ⊆ Y → Y ⊆ U → app H X ⊆ app H Y
Theorem.clop_idem
closure_operator H U →
X ⊆ U → app H (app H X) = app H X
Theorem.clop_from_closure_system
closure_system M U →
H = {t | ∃X. X ∈ power U ∧ t = (X, ⋂{A | A ∈ M ∧ X ⊆ A})} →
closure_operator H U
Grothendieck universes
Definition.univ_equi
univ U ↔ ∅ ∈ U ∧
(∀x. x ∈ U → x ⊆ U) ∧
(∀x. x ∈ U → power x ∈ U) ∧
(∀I. ∀x. I ∈ U → map x I U → ⋃(img x I) ∈ U)
Definition.least_univ_eq
least_univ A = ⋂{U | univ U ∧ A ∈ U}
Theorem.nat_succ_inj
a ∈ ℕ → b ∈ ℕ → a + 1 = b + 1 → a = b
Theorem.nat_rec_uniqueness
app f 0 = x0 ∧ (∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n)) →
app g 0 = x0 ∧ (∀n. n ∈ ℕ → app g (n + 1) = φ n (app g n)) →
∀n. n ∈ ℕ → app f n = app g n
Theorem.nat_rec_existence
set X → x0 ∈ X →
(∀n. n ∈ ℕ → ∀x. x ∈ X → φ n x ∈ X) → ∃f. set f ∧ (map f ℕ X ∧
(app f 0 = x0 ∧ ∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n)))
Theorem.nat_recursion
set X → x0 ∈ X →
(∀n. n ∈ ℕ → ∀x. x ∈ X → φ n x ∈ X) → ∃g. set g ∧ ∀f. g = f ↔ map f ℕ X ∧
(app f 0 = x0 ∧ ∀n. n ∈ ℕ → app f (n + 1) = φ n (app f n))