Theorem intersection_incl_left

Theorem. intersection_incl_left
A ∩ B ⊆ A
Proof
01. 1 ⊢ x ∈ A ∩ B, hypo.
02. 1 ⊢ x ∈ A ∧ x ∈ B, intersection_elim 1.
03. 1 ⊢ x ∈ A, conj_eliml 2.
04. ⊢ x ∈ A ∩ B → x ∈ A, subj_intro 3.
05. ⊢ ∀x. x ∈ A ∩ B → x ∈ A, uq_intro 4.
intersection_incl_left. ⊢ A ∩ B ⊆ A, incl_intro 5.

Dependencies
The given proof depends on two axioms:
comp, eq_subst.