Proof 01. 1 ⊢ A = ⋂M, hypo. 02. 2 ⊢ B ∈ M, hypo. 03. 3 ⊢ x ∈ A, hypo. 04. 1, 3 ⊢ x ∈ ⋂M, eq_subst 1 3, P u ↔ x ∈ u. 05. 1, 2, 3 ⊢ x ∈ B, Intersection_elim 4 2. 06. 1, 2 ⊢ x ∈ A → x ∈ B, subj_intro 5. 07. 1, 2 ⊢ ∀x. x ∈ A → x ∈ B, uq_intro 6. 08. 1, 2 ⊢ A ⊆ B, incl_intro 7. Intersection_is_lower_bound. ⊢ A = ⋂M → B ∈ M → A ⊆ B, subj_intro_ii 8.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.