States that ⋃M is an upper bound of M with respect to the inclusion order. See Intersection_is_lower_bound for the dual statement.
Proof 01. 1 ⊢ A = ⋃M, hypo. 02. 2 ⊢ B ∈ M, hypo. 03. 3 ⊢ x ∈ B, hypo. 04. 2, 3 ⊢ x ∈ ⋃M, Union_intro 2 3. 05. 1, 2, 3 ⊢ x ∈ A, eq_subst_rev 1 4, P t ↔ x ∈ t. 06. 1, 2 ⊢ x ∈ B → x ∈ A, subj_intro 5. 07. 1, 2 ⊢ ∀x. x ∈ B → x ∈ A, uq_intro 6. 08. 1, 2 ⊢ B ⊆ A, incl_intro 7. Union_is_upper_bound. ⊢ A = ⋃M → B ∈ M → B ⊆ A, subj_intro_ii 8.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.