Proof 01. 1 ⊢ y = x, hypo. 02. 1 ⊢ x = y, eq_symm 1. 03. 1 ⊢ P x → P y, subj_elim eq_subst 2. eq_subst_rev. ⊢ y = x → P x → P y, subj_intro 3.
DependenciesThe given proof depends on two axioms:eq_refl, eq_subst.