Proof 01. 1 ⊢ x ∈ ⋂M, hypo. 02. 1 ⊢ x ∈ {x | ∀y. y ∈ M → x ∈ y}, eq_subst Intersection_eq 1, P A ↔ x ∈ A. 03. 1 ⊢ ∀y. y ∈ M → x ∈ y, comp_elim 2. 04. 1 ⊢ y ∈ M → x ∈ y, uq_elim 3. Intersection_elim. ⊢ x ∈ ⋂M → y ∈ M → x ∈ y, subj_intro 4.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.