Proof 01. ⊢ u ∈ {x | P x} ↔ set u ∧ P u, comp. 02. ⊢ u ∈ {x | P x} → set u ∧ P u, bij_eliml 1. 03. 3 ⊢ u ∈ {x | P x}, hypo. 04. 3 ⊢ set u ∧ P u, subj_elim 2 3. 05. 3 ⊢ P u, conj_elimr 4. comp_elim. ⊢ u ∈ {x | P x} → P u, subj_intro 5.
Dependencies
The given proof depends on one axiom:
comp.