Proof 001. 1 ⊢ X = {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)}, hypo. 002. 2 ⊢ Y = {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})}, hypo. 003. ⊢ set ∅, empty_set_is_set. 004. ⊢ set {∅}, set_sg 3. 005. ⊢ ∅ ∈ {∅, {∅}}, in21 3. 006. ⊢ {∅} ∈ {∅, {∅}}, in22 4. 007. ⊢ u = u, eq_refl. 008. ⊢ A ∨ u = u, disj_intror 7. 009. ⊢ A ∨ ∅ = ∅, 8. 010. ⊢ A ∨ {∅} = {∅}, 8. 011. ⊢ ∅ ∈ {∅, {∅}} ∧ (A ∨ ∅ = ∅), conj_intro 5 9. 012. ⊢ {∅} ∈ {∅, {∅}} ∧ (A ∨ {∅} = {∅}), conj_intro 6 10. 013. ⊢ ∅ ∈ {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)}, comp_intro 3 11, P x ↔ x ∈ {∅, {∅}} ∧ (A ∨ x = ∅). 014. ⊢ {∅} ∈ {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})}, comp_intro 4 12, P y ↔ y ∈ {∅, {∅}} ∧ (A ∨ y = {∅}). 015. 1 ⊢ ∅ ∈ X, eq_subst_rev 1 13, P u ↔ ∅ ∈ u. 016. 2 ⊢ {∅} ∈ Y, eq_subst_rev 2 14, P u ↔ {∅} ∈ u. 017. ⊢ set {{∅}}, set_sg 4. 018. ⊢ set {∅, {∅}}, set_union 4 17. 019. ⊢ set {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)}, sep_is_set 18. 020. ⊢ set {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})}, sep_is_set 18. 021. 1 ⊢ set X, eq_subst_rev 1 19, P u ↔ set u. 022. 2 ⊢ set Y, eq_subst_rev 2 20, P u ↔ set u. 023. 23 ⊢ u ∈ {X, Y} ∩ {∅}, hypo. 024. 23 ⊢ u ∈ {∅}, intersection_elimr 23. 025. 23 ⊢ u = ∅, sg_elim 3 24. 026. 23 ⊢ u ∈ {X, Y}, intersection_eliml 23. 027. 23 ⊢ u ∈ {X} ∨ u ∈ {Y}, union_elim 26. 028. 28 ⊢ u ∈ {X}, hypo. 029. 1, 28 ⊢ u = X, sg_elim 21 28. 030. 1, 28 ⊢ X = u, eq_symm 29. 031. 1, 23, 28 ⊢ X = ∅, eq_trans 30 25. 032. 1, 23, 28 ⊢ ∅ ∈ ∅, eq_subst 31 15. 033. 1, 23, 28 ⊢ u ∈ ∅, empty_efq 32. 034. 34 ⊢ u ∈ {Y}, hypo. 035. 2, 34 ⊢ u = Y, sg_elim 22 34. 036. 2, 34 ⊢ Y = u, eq_symm 35. 037. 2, 23, 34 ⊢ Y = ∅, eq_trans 36 25. 038. 2, 23, 34 ⊢ {∅} ∈ ∅, eq_subst 37 16. 039. 2, 23, 34 ⊢ u ∈ ∅, empty_efq 38. 040. 1, 2, 23 ⊢ u ∈ ∅, disj_elim 27 33 39. 041. 1, 2 ⊢ u ∈ {X, Y} ∩ {∅} → u ∈ ∅, subj_intro 40. 042. 1, 2 ⊢ ∀u. u ∈ {X, Y} ∩ {∅} → u ∈ ∅, uq_intro 41. 043. 1, 2 ⊢ {X, Y} ∩ {∅} ⊆ ∅, incl_intro 42. 044. ⊢ ∅ ⊆ {X, Y} ∩ {∅}, empty_set_is_least. 045. 1, 2 ⊢ {X, Y} ∩ {∅} = ∅, incl_antisym 43 44. 046. 1, 2 ⊢ {X, Y} \ {∅} = {X, Y}, diff_disjoint 45. 047. 47 ⊢ ∀M. ∃f. choice_function f ∧ dom f = M \ {∅}, hypo. 048. 47 ⊢ ∃f. choice_function f ∧ dom f = {X, Y} \ {∅}, uq_elim 47. 049. 49 ⊢ choice_function f ∧ dom f = {X, Y} \ {∅}, hypo. 050. 49 ⊢ choice_function f, conj_eliml 49. 051. 49 ⊢ dom f = {X, Y} \ {∅}, conj_elimr 49. 052. 1, 2, 49 ⊢ dom f = {X, Y}, eq_trans 51 46. 053. 49 ⊢ function f ∧ ∀x. x ∈ dom f → app f x ∈ x, choice_fn_unfold 50. 054. 49 ⊢ function f, conj_eliml 53. 055. 49 ⊢ ∀x. x ∈ dom f → app f x ∈ x, conj_elimr 53. 056. ⊢ {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)} ⊆ {∅, {∅}}, sep_is_subclass. 057. ⊢ {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})} ⊆ {∅, {∅}}, sep_is_subclass. 058. 1 ⊢ X ⊆ {∅, {∅}}, eq_subst_rev 1 56, P u ↔ u ⊆ {∅, {∅}}. 059. 2 ⊢ Y ⊆ {∅, {∅}}, eq_subst_rev 2 57, P u ↔ u ⊆ {∅, {∅}}. 060. 1 ⊢ X ∈ {X, Y}, in21 21. 061. 2 ⊢ Y ∈ {X, Y}, in22 22. 062. 1, 2, 49 ⊢ X ∈ dom f, eq_subst_rev 52 60, P u ↔ X ∈ u. 063. 1, 2, 49 ⊢ Y ∈ dom f, eq_subst_rev 52 61, P u ↔ Y ∈ u. 064. 1, 2, 49 ⊢ app f X ∈ X, uq_bounded_elim 55 62. 065. 1, 2, 49 ⊢ app f Y ∈ Y, uq_bounded_elim 55 63. 066. 1, 2, 49 ⊢ app f X ∈ {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)}, eq_subst 1 64, P u ↔ app f X ∈ u. 067. 1, 2, 49 ⊢ app f Y ∈ {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})}, eq_subst 2 65, P u ↔ app f Y ∈ u. 068. 1, 2, 49 ⊢ app f X ∈ {∅, {∅}} ∧ (A ∨ app f X = ∅), comp_elim 66. 069. 1, 2, 49 ⊢ app f Y ∈ {∅, {∅}} ∧ (A ∨ app f Y = {∅}), comp_elim 67. 070. 1, 2, 49 ⊢ A ∨ app f X = ∅, conj_elimr 68. 071. 1, 2, 49 ⊢ A ∨ app f Y = {∅}, conj_elimr 69. 072. 1, 2, 49 ⊢ app f X ∈ {∅, {∅}}, conj_eliml 68. 073. 1, 2, 49 ⊢ app f Y ∈ {∅, {∅}}, conj_eliml 69. 074. 1, 2, 49 ⊢ app f X ∈ {∅} ∨ app f X ∈ {{∅}}, union_elim 72. 075. 1, 2, 49 ⊢ app f Y ∈ {∅} ∨ app f Y ∈ {{∅}}, union_elim 73. 076. 76 ⊢ app f Y ∈ {∅}, hypo. 077. 76 ⊢ app f Y = ∅, sg_elim 3 76. 078. 1, 2, 49, 76 ⊢ A ∨ ∅ = {∅}, eq_subst 77 71, P u ↔ A ∨ u = {∅}. 079. 1, 2, 49, 76 ⊢ A, tollendo_ponens_left 78 zero_neq_one. 080. 1, 2, 49, 76 ⊢ A ∨ ¬A, disj_introl 79. 081. 81 ⊢ app f Y ∈ {{∅}}, hypo. 082. 81 ⊢ app f Y = {∅}, sg_elim 4 81. 083. 83 ⊢ app f X ∈ {∅}, hypo. 084. 83 ⊢ app f X = ∅, sg_elim 3 83. 085. 85 ⊢ A, hypo. 086. 86 ⊢ u ∈ X, hypo. 087. 1, 86 ⊢ u ∈ {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)}, eq_subst 1 86. 088. 1, 86 ⊢ u ∈ {∅, {∅}} ∧ (A ∨ u = ∅), comp_elim 87. 089. 1, 86 ⊢ u ∈ {∅, {∅}}, conj_eliml 88. 090. 85 ⊢ A ∨ u = {∅}, disj_introl 85. 091. 1, 85, 86 ⊢ u ∈ {∅, {∅}} ∧ (A ∨ u = {∅}), conj_intro 89 90. 092. 1, 86 ⊢ set u, set_intro 89. 093. 1, 85, 86 ⊢ u ∈ {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})}, comp_intro 92 91. 094. 1, 2, 85, 86 ⊢ u ∈ Y, eq_subst_rev 2 93, P t ↔ u ∈ t. 095. 1, 2, 85 ⊢ u ∈ X → u ∈ Y, subj_intro 94. 096. 96 ⊢ u ∈ Y, hypo. 097. 2, 96 ⊢ u ∈ {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})}, eq_subst 2 96. 098. 2, 96 ⊢ u ∈ {∅, {∅}} ∧ (A ∨ u = {∅}), comp_elim 97. 099. 2, 96 ⊢ u ∈ {∅, {∅}}, conj_eliml 98. 100. 85 ⊢ A ∨ u = ∅, disj_introl 85. 101. 2, 85, 96 ⊢ u ∈ {∅, {∅}} ∧ (A ∨ u = ∅), conj_intro 99 100. 102. 2, 96 ⊢ set u, set_intro 99. 103. 2, 85, 96 ⊢ u ∈ {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)}, comp_intro 102 101. 104. 1, 2, 85, 96 ⊢ u ∈ X, eq_subst_rev 1 103, P t ↔ u ∈ t. 105. 1, 2, 85 ⊢ u ∈ Y → u ∈ X, subj_intro 104. 106. 1, 2, 85 ⊢ u ∈ X ↔ u ∈ Y, bij_intro 95 105. 107. 1, 2, 85 ⊢ ∀u. u ∈ X ↔ u ∈ Y, uq_intro 106. 108. 1, 2, 85 ⊢ X = Y, ext 107. 109. 1, 2, 85 ⊢ app f X = app f Y, f_equal 108, g x = app f x. 110. 83 ⊢ ∅ = app f X, eq_symm 84. 111. 1, 2, 83, 85 ⊢ ∅ = app f Y, eq_trans 110 109. 112. 1, 2, 81, 83, 85 ⊢ ∅ = {∅}, eq_trans 111 82. 113. 1, 2, 81, 83, 85 ⊢ ⊥, neg_elim zero_neq_one 112. 114. 1, 2, 81, 83 ⊢ ¬A, neg_intro 113. 115. 1, 2, 81, 83 ⊢ A ∨ ¬A, disj_intror 114. 116. 116 ⊢ app f X ∈ {{∅}}, hypo. 117. 116 ⊢ app f X = {∅}, sg_elim 4 116. 118. 1, 2, 49, 116 ⊢ A ∨ {∅} = ∅, eq_subst 117 70, P u ↔ A ∨ u = ∅. 119. ⊢ ¬{∅} = ∅, neq_symm zero_neq_one. 120. 1, 2, 49, 116 ⊢ A, tollendo_ponens_left 118 119. 121. 1, 2, 49, 116 ⊢ A ∨ ¬A, disj_introl 120. 122. 1, 2, 49, 81 ⊢ A ∨ ¬A, disj_elim 74 115 121. 123. 1, 2, 49 ⊢ A ∨ ¬A, disj_elim 75 80 122. 124. 47, 1, 2 ⊢ A ∨ ¬A, ex_elim 48 123. 125. 47, 1 ⊢ Y = {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})} → A ∨ ¬A, subj_intro 124. 126. 47, 1 ⊢ ∀Y. Y = {y | y ∈ {∅, {∅}} ∧ (A ∨ y = {∅})} → A ∨ ¬A, uq_intro 125. 127. 47, 1 ⊢ A ∨ ¬A, disused_eq 126. 128. 47 ⊢ X = {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)} → A ∨ ¬A, subj_intro 127. 129. 47 ⊢ ∀X. X = {x | x ∈ {∅, {∅}} ∧ (A ∨ x = ∅)} → A ∨ ¬A, uq_intro 128. 130. 47 ⊢ A ∨ ¬A, disused_eq 129. Diaconescu_Goodman_Myhill_theorem. ⊢ (∀M. ∃f. choice_function f ∧ dom f = M \ {∅}) → A ∨ ¬A, subj_intro 130.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, pairing, subset, union.