Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ x ∈ {a}, hypo. 03. 2 ⊢ x ∈ {x | set a → x = a}, eq_subst sg_eq 2, P u ↔ x ∈ u. 04. 2 ⊢ set a → x = a, comp_elim 3. 05. 1, 2 ⊢ x = a, subj_elim 4 1. 06. 1 ⊢ x ∈ {a} → x = a, subj_intro 5. sg_elim. ⊢ set a → x ∈ {a} → x = a, subj_intro 6.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.