Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ set y, hypo. 03. 1, 2 ⊢ set {x, y}, pairing 1 2. 04. ⊢ set {x, y} → set (⋃{x, y}), union. 05. 1, 2 ⊢ set (⋃{x, y}), subj_elim 4 3. 06. 1, 2 ⊢ set x ∧ set y, conj_intro 1 2. 07. 1, 2 ⊢ ⋃{x, y} = x ∪ y, Union_pair_set 6. 08. 1, 2 ⊢ set (x ∪ y), eq_subst 7 5, P u ↔ set u. set_union. ⊢ set x → set y → set (x ∪ y), subj_intro_ii 8.
Dependencies
The given proof depends on six axioms:
comp, eq_refl, eq_subst, ext, pairing, union.