Proof 01. 1 ⊢ set x ∧ set y, hypo. 02. 1 ⊢ set x, conj_eliml 1. 03. 1 ⊢ set y, conj_elimr 1. 04. 4 ⊢ u ∈ ⋃{x, y}, hypo. 05. 4 ⊢ ∃a. a ∈ {x, y} ∧ u ∈ a, Union_elim 4. 06. 6 ⊢ a ∈ {x, y} ∧ u ∈ a, hypo. 07. 6 ⊢ a ∈ {x, y}, conj_eliml 6. 08. 6 ⊢ u ∈ a, conj_elimr 6. 09. 6 ⊢ a ∈ {x} ∨ a ∈ {y}, union_elim 7. 10. 10 ⊢ a ∈ {x}, hypo. 11. 1, 10 ⊢ a = x, sg_elim 2 10. 12. 1, 6, 10 ⊢ u ∈ x, eq_subst 11 8, P x ↔ u ∈ x. 13. 1, 6, 10 ⊢ u ∈ x ∪ y, union_introl 12. 14. 14 ⊢ a ∈ {y}, hypo. 15. 1, 14 ⊢ a = y, sg_elim 3 14. 16. 1, 6, 14 ⊢ u ∈ y, eq_subst 15 8, P x ↔ u ∈ x. 17. 1, 6, 14 ⊢ u ∈ x ∪ y, union_intror 16. 18. 1, 6 ⊢ u ∈ x ∪ y, disj_elim 9 13 17. 19. 1, 4 ⊢ u ∈ x ∪ y, ex_elim 5 18. 20. 1 ⊢ u ∈ ⋃{x, y} → u ∈ x ∪ y, subj_intro 19. 21. 1 ⊢ ∀u. u ∈ ⋃{x, y} → u ∈ x ∪ y, uq_intro 20. 22. 1 ⊢ ⋃{x, y} ⊆ x ∪ y, incl_intro 21. 23. 23 ⊢ u ∈ x ∪ y, hypo. 24. 23 ⊢ u ∈ x ∨ u ∈ y, union_elim 23. 25. 25 ⊢ u ∈ x, hypo. 26. 1 ⊢ x ∈ {x, y}, in21 2. 27. 1, 25 ⊢ x ∈ {x, y} ∧ u ∈ x, conj_intro 26 25. 28. 1, 25 ⊢ ∃a. a ∈ {x, y} ∧ u ∈ a, ex_intro 27. 29. 1, 25 ⊢ u ∈ ⋃{x, y}, Union_intro_ex 28. 30. 30 ⊢ u ∈ y, hypo. 31. 1 ⊢ y ∈ {x, y}, in22 3. 32. 1, 30 ⊢ y ∈ {x, y} ∧ u ∈ y, conj_intro 31 30. 33. 1, 30 ⊢ ∃a. a ∈ {x, y} ∧ u ∈ a, ex_intro 32. 34. 1, 30 ⊢ u ∈ ⋃{x, y}, Union_intro_ex 33. 35. 1, 23 ⊢ u ∈ ⋃{x, y}, disj_elim 24 29 34. 36. 1 ⊢ u ∈ x ∪ y → u ∈ ⋃{x, y}, subj_intro 35. 37. 1 ⊢ ∀u. u ∈ x ∪ y → u ∈ ⋃{x, y}, uq_intro 36. 38. 1 ⊢ x ∪ y ⊆ ⋃{x, y}, incl_intro 37. 39. 1 ⊢ ⋃{x, y} = x ∪ y, incl_antisym 22 38. Union_pair_set. ⊢ set x ∧ set y → ⋃{x, y} = x ∪ y, subj_intro 39.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.