Proof 01. 1 ⊢ A ⊆ B, hypo. 02. 2 ⊢ x ∈ A, hypo. 03. 1, 2 ⊢ x ∈ B, incl_elim 1 2. 04. 1 ⊢ x ∈ A → x ∈ B, subj_intro 3. 05. 5 ⊢ B ⊆ A, hypo. 06. 6 ⊢ x ∈ B, hypo. 07. 5, 6 ⊢ x ∈ A, incl_elim 5 6. 08. 5 ⊢ x ∈ B → x ∈ A, subj_intro 7. 09. 1, 5 ⊢ x ∈ A ↔ x ∈ B, bij_intro 4 8. 10. 1, 5 ⊢ ∀x. x ∈ A ↔ x ∈ B, uq_intro 9. 11. 1, 5 ⊢ A = B, ext 10. incl_antisym. ⊢ A ⊆ B → B ⊆ A → A = B, subj_intro_ii 11.
Dependencies
The given proof depends on one axiom:
ext.