Proof 01. 1 ⊢ set x, hypo. 02. ⊢ x = x, eq_refl. 03. 1 ⊢ x ∈ {x}, sg_intro 1 2. 04. ⊢ {x} ⊆ {x, y}, union_incl_left. 05. 1 ⊢ x ∈ {x, y}, incl_elim 4 3. in21. ⊢ set x → x ∈ {x, y}, subj_intro 5.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.