Theorem union_incl_left

Theorem. union_incl_left
A ⊆ A ∪ B
Proof
01. 1 ⊢ x ∈ A, hypo.
02. 1 ⊢ x ∈ A ∪ B, union_introl 1.
03. ⊢ x ∈ A → x ∈ A ∪ B, subj_intro 2.
04. ⊢ ∀x. x ∈ A → x ∈ A ∪ B, uq_intro 3.
union_incl_left. ⊢ A ⊆ A ∪ B, incl_intro 4.

Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.