Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ x ∈ {a}, hypo. 03. 2 ⊢ x ∈ {x | set a → x = a}, eq_subst sg_eq 2, P u ↔ x ∈ u. 04. 2 ⊢ set a → x = a, comp_elim 3. 05. 1, 2 ⊢ x = a, subj_elim 4 1. 06. 1 ⊢ x ∈ {a} → x = a, subj_intro 5. sg_elim. ⊢ set a → x ∈ {a} → x = a, subj_intro 6. 07. 7 ⊢ set a, hypo. 08. 8 ⊢ x = a, hypo. 09. 7, 8 ⊢ set x, eq_subst_rev 8 7, P u ↔ set u. 10. 8, 7 ⊢ x = a, wk 8. 11. 8 ⊢ set a → x = a, subj_intro 10. 12. 7, 8 ⊢ x ∈ {x | set a → x = a}, comp_intro 9 11. 13. 7, 8 ⊢ x ∈ {a}, eq_subst_rev sg_eq 12, P u ↔ x ∈ u. 14. 7 ⊢ x = a → x ∈ {a}, subj_intro 13. sg_intro. ⊢ set a → x = a → x ∈ {a}, subj_intro 14.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.