Proof 01. 1 ⊢ x ∈ A ∪ B, hypo. 02. 1 ⊢ x ∈ {x | x ∈ A ∨ x ∈ B}, eq_subst union_eq 1, P u ↔ x ∈ u. 03. 1 ⊢ x ∈ A ∨ x ∈ B, comp_elim 2. union_elim. ⊢ x ∈ A ∪ B → x ∈ A ∨ x ∈ B, subj_intro 3.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.