Proof 01. 1 ⊢ set y, hypo. 02. ⊢ y = y, eq_refl. 03. 1 ⊢ y ∈ {y}, sg_intro 1 2. 04. ⊢ {y} ⊆ {x, y}, union_incl_right. 05. 1 ⊢ y ∈ {x, y}, incl_elim 4 3. in22. ⊢ set y → y ∈ {x, y}, subj_intro 5.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.