Proof 01. 1 ⊢ x ∈ B, hypo. 02. 1 ⊢ x ∈ A ∨ x ∈ B, disj_intror 1. 03. 1 ⊢ x ∈ A ∪ B, union_intro 2. union_intror. ⊢ x ∈ B → x ∈ A ∪ B, subj_intro 3.
DependenciesThe given proof depends on three axioms:comp, eq_refl, eq_subst.