Proof 01. 1 ⊢ x ∈ A ∨ x ∈ B, hypo. 02. 2 ⊢ x ∈ A, hypo. 03. 2 ⊢ set x, set_intro 2. 04. 1, 2 ⊢ x ∈ {x | x ∈ A ∨ x ∈ B}, comp_intro 3 1. 05. 1, 2 ⊢ x ∈ A ∪ B, eq_subst_rev union_eq 4, P u ↔ x ∈ u. 06. 6 ⊢ x ∈ B, hypo. 07. 6 ⊢ set x, set_intro 6. 08. 1, 6 ⊢ x ∈ {x | x ∈ A ∨ x ∈ B}, comp_intro 7 1. 09. 1, 6 ⊢ x ∈ A ∪ B, eq_subst_rev union_eq 8, P u ↔ x ∈ u. 10. 1 ⊢ x ∈ A ∪ B, disj_elim 1 5 9. union_intro. ⊢ x ∈ A ∨ x ∈ B → x ∈ A ∪ B, subj_intro 10.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.