Proof 01. 1 ⊢ A ∩ B = ∅, hypo. 02. 2 ⊢ u ∈ A, hypo. 03. 3 ⊢ u ∈ B, hypo. 04. 2, 3 ⊢ u ∈ A ∩ B, intersection_intro 2 3. 05. 1, 2, 3 ⊢ u ∈ ∅, eq_subst 1 4, P x ↔ u ∈ x. 06. 1, 2, 3 ⊢ ⊥, empty_contra 5. 07. 1, 2 ⊢ ¬u ∈ B, neg_intro 6. 08. 1, 2 ⊢ u ∈ A \ B, diff_intro 2 7. 09. 1 ⊢ u ∈ A → u ∈ A \ B, subj_intro 8. 10. 1 ⊢ ∀u. u ∈ A → u ∈ A \ B, uq_intro 9. 11. 1 ⊢ A ⊆ A \ B, incl_intro 10. 12. ⊢ A \ B ⊆ A, diff_incl. 13. 1 ⊢ A \ B = A, incl_antisym 12 11. diff_disjoint. ⊢ A ∩ B = ∅ → A \ B = A, subj_intro 13.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.