Proof 01. 1 ⊢ x ∈ A \ B, hypo. 02. 1 ⊢ x ∈ A, diff_eliml 1. 03. ⊢ x ∈ A \ B → x ∈ A, subj_intro 2. 04. ⊢ ∀x. x ∈ A \ B → x ∈ A, uq_intro 3. diff_incl. ⊢ A \ B ⊆ A, incl_intro 4.
DependenciesThe given proof depends on two axioms:comp, eq_subst.