Proof 01. 1 ⊢ x ∈ A \ B, hypo. 02. 1 ⊢ x ∈ A ∧ ¬x ∈ B, diff_elim 1. 03. 1 ⊢ x ∈ A, conj_eliml 2. diff_eliml. ⊢ x ∈ A \ B → x ∈ A, subj_intro 3.
DependenciesThe given proof depends on two axioms:comp, eq_subst.