Proof 01. 1 ⊢ set A, hypo. 02. ⊢ {x | x ∈ A ∧ P x} ⊆ A, sep_is_subclass. 03. 1 ⊢ set {x | x ∈ A ∧ P x}, subset 2 1. sep_is_set. ⊢ set A → set {x | x ∈ A ∧ P x}, subj_intro 3.
DependenciesThe given proof depends on two axioms:comp, subset.