Proof 01. 1 ⊢ x ∈ ∅, hypo. 02. 1 ⊢ x ∈ {x | ⊥}, eq_subst empty_set_eq 1. 03. 1 ⊢ ⊥, comp_elim 2. 04. 1 ⊢ A, efq 3. empty_efq. ⊢ x ∈ ∅ → A, subj_intro 4.
DependenciesThe given proof depends on three axioms:comp, efq, eq_subst.