Proof 01. 1 ⊢ x = y, hypo. 02. 2 ⊢ y = z, hypo. 03. 1 ⊢ y = x, eq_symm 1. 04. 1, 2 ⊢ x = z, eq_subst 3 2, P u ↔ u = z. eq_trans. ⊢ x = y → y = z → x = z, subj_intro_ii 4.
DependenciesThe given proof depends on two axioms:eq_refl, eq_subst.