Proof 01. 1 ⊢ ¬x = y, hypo. 02. 2 ⊢ y = x, hypo. 03. 2 ⊢ x = y, eq_symm 2. 04. 1, 2 ⊢ ⊥, neg_elim 1 3. 05. 1 ⊢ ¬y = x, neg_intro 4. neq_symm. ⊢ ¬x = y → ¬y = x, subj_intro 5.
DependenciesThe given proof depends on two axioms:eq_refl, eq_subst.