Proof 01. 1 ⊢ A ↔ B, hypo. 02. 2 ⊢ B ↔ C, hypo. 03. 1 ⊢ A → B, bij_eliml 1. 04. 2 ⊢ B → C, bij_eliml 2. 05. 1 ⊢ B → A, bij_elimr 1. 06. 2 ⊢ C → B, bij_elimr 2. 07. 1, 2 ⊢ A → C, hypothetical_syllogism 3 4. 08. 1, 2 ⊢ C → A, hypothetical_syllogism 6 5. 09. 1, 2 ⊢ A ↔ C, bij_intro 7 8. equi_trans. ⊢ (A ↔ B) → (B ↔ C) → (A ↔ C), subj_intro_ii 9.