Theorem rabs_dist_mul

Theorem. rabs_dist_mul
x ∈ ℝ → y ∈ ℝ → abs (x⋅y) = (abs x)⋅(abs y)
Proof
01. 1 ⊢ x ∈ ℝ, hypo.
02. 2 ⊢ y ∈ ℝ, hypo.
03. ⊢ 0 ≤ x ∨ ¬0 ≤ x, lem.

04. 4 ⊢ 0 ≤ x, hypo.
05. 1, 4 ⊢ abs x = x, rabs_eql 1 4.
06. ⊢ 0 ≤ y ∨ ¬0 ≤ y, lem.
07. 7 ⊢ 0 ≤ y, hypo.
08. 2, 7 ⊢ abs y = y, rabs_eql 2 7.
09. 1, 2, 4, 7 ⊢ 0 ≤ x⋅y, rle_compat_mul 1 2 4 7.
10. 1, 2 ⊢ x⋅y ∈ ℝ, rmul_closed 1 2.
11. 1, 2, 4, 7 ⊢ abs (x⋅y) = x⋅y, rabs_eql 10 9.
12. 1, 2, 4, 7 ⊢ abs (x⋅y) = (abs x)⋅y,
  eq_subst_rev 5 11, P t ↔ abs (x⋅y) = t⋅y.
13. 1, 2, 4, 7 ⊢ abs (x⋅y) = (abs x)⋅(abs y),
  eq_subst_rev 8 12, P t ↔ abs (x⋅y) = (abs x)⋅t.
14. 14 ⊢ ¬0 ≤ y, hypo.
15. 2, 14 ⊢ abs y = -y, rabs_eqr 2 14.
16. ⊢ 0 ∈ ℝ, calc.
17. 2, 14 ⊢ y ≤ 0, rle_neg 16 2 14.
18. 1, 2, 4, 14 ⊢ x⋅y ≤ 0, rmul_nn_np 1 2 4 17.
19. 1, 2, 4, 14 ⊢ abs (x⋅y) = -(x⋅y), rabs_non_positive 10 18.
20. 1, 2 ⊢ -(x⋅y) = x⋅(-y), rmul_compatr_neg 1 2.
21. 1, 2, 4, 14 ⊢ abs (x⋅y) = x⋅(-y), eq_trans 19 20.
22. 1, 2, 4, 14 ⊢ abs (x⋅y) = (abs x)⋅(-y),
  eq_subst_rev 5 21, P t ↔ abs (x⋅y) = t⋅(-y).
23. 1, 2, 4, 14 ⊢ abs (x⋅y) = (abs x)⋅(abs y),
  eq_subst_rev 15 22, P t ↔ abs (x⋅y) = (abs x)⋅t.
24. 1, 2, 4 ⊢ abs (x⋅y) = (abs x)⋅(abs y), disj_elim 6 13 23.

25. 25 ⊢ ¬0 ≤ x, hypo.
26. 1, 25 ⊢ x ≤ 0, rle_neg 16 1 25.
27. 1, 25 ⊢ abs x = -x, rabs_non_positive 1 26.
28. ⊢ 0 ≤ y ∨ ¬0 ≤ y, lem.
29. 29 ⊢ 0 ≤ y, hypo.
30. 2, 29 ⊢ abs y = y, rabs_eql 2 29.
31. 1, 2, 25, 29 ⊢ x⋅y ≤ 0, rmul_np_nn 1 2 26 29.
32. 1, 2, 25, 29 ⊢ abs (x⋅y) = -(x⋅y), rabs_non_positive 10 31.
33. 1, 2 ⊢ -(x⋅y) = (-x)⋅y, rmul_compatl_neg 1 2.
34. 1, 2, 25, 29 ⊢ abs (x⋅y) = (-x)⋅y, eq_trans 32 33.
35. 1, 2, 25, 29 ⊢ abs (x⋅y) = (abs x)⋅y,
  eq_subst_rev 27 34, P t ↔ abs (x⋅y) = t⋅y.
36. 1, 2, 25, 29 ⊢ abs (x⋅y) = (abs x)⋅(abs y),
  eq_subst_rev 30 35, P t ↔ abs (x⋅y) = (abs x)⋅t.
37. 37 ⊢ ¬0 ≤ y, hypo.
38. 2, 37 ⊢ abs y = -y, rabs_eqr 2 37.
39. 2, 37 ⊢ y ≤ 0, rle_neg 16 2 37.
40. 1, 2, 25, 37 ⊢ 0 ≤ x⋅y, rmul_np_np 1 2 26 39.
41. 1, 2, 25, 37 ⊢ abs (x⋅y) = x⋅y, rabs_eql 10 40.
42. 1, 2 ⊢ (-x)⋅(-y) = x⋅y, rmul_cancel_neg 1 2.
43. 1, 2 ⊢ x⋅y = (-x)⋅(-y), eq_symm 42.
44. 1, 2, 25, 37 ⊢ abs (x⋅y) = (-x)⋅(-y), eq_trans 41 43.
45. 1, 2, 25, 37 ⊢ abs (x⋅y) = (abs x)⋅(-y),
  eq_subst_rev 27 44, P t ↔ abs (x⋅y) = t⋅(-y).
46. 1, 2, 25, 37 ⊢ abs (x⋅y) = (abs x)⋅(abs y),
  eq_subst_rev 38 45, P t ↔ abs (x⋅y) = (abs x)⋅t.
47. 1, 2, 25 ⊢ abs (x⋅y) = (abs x)⋅(abs y), disj_elim 28 36 46.

48. 1, 2 ⊢ abs (x⋅y) = (abs x)⋅(abs y), disj_elim 3 24 47.
rabs_dist_mul. ⊢ x ∈ ℝ → y ∈ ℝ →
  abs (x⋅y) = (abs x)⋅(abs y), subj_intro_ii 48.

Dependencies
The given proof depends on 20 axioms:
comp, efq, eq_refl, eq_subst, ext, lem, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rle_antisym, rle_compat_add, rle_compat_mul, rle_refl, rle_total, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.