Theorem rmul_np_np

Theorem. rmul_np_np
a ∈ ℝ → b ∈ ℝ → a ≤ 0 → b ≤ 0 → 0 ≤ a⋅b
Proof
01. 1 ⊢ a ∈ ℝ, hypo.
02. 2 ⊢ b ∈ ℝ, hypo.
03. 3 ⊢ a ≤ 0, hypo.
04. 4 ⊢ b ≤ 0, hypo.
05. ⊢ 0 ∈ ℝ, calc.
06. ⊢ 0 = -0, calc.
07. 1, 3 ⊢ -0 ≤ -a, rle_neg_swaps 1 5 3.
08. 2, 4 ⊢ -0 ≤ -b, rle_neg_swaps 2 5 4.
09. 1, 3 ⊢ 0 ≤ -a, eq_le_trans 6 7.
10. 2, 4 ⊢ 0 ≤ -b, eq_le_trans 6 8.
11. 1 ⊢ -a ∈ ℝ, rneg_closed 1.
12. 2 ⊢ -b ∈ ℝ, rneg_closed 2.
13. 1, 2, 3, 4 ⊢ 0 ≤ (-a)⋅(-b), rle_compat_mul 11 12 9 10.
14. 1, 2 ⊢ -(a⋅b) = a⋅(-b), rmul_compatr_neg 1 2.
15. 1, 2 ⊢ -(-(a⋅b)) = -(a⋅(-b)), eq_cong 14, f t = -t.
16. 1, 2 ⊢ a⋅b ∈ ℝ, rmul_closed 1 2.
17. 1, 2 ⊢ -(-(a⋅b)) = a⋅b, rneg_involution 16.
18. 1, 2 ⊢ -(a⋅(-b)) = a⋅b, eq_trans_ll 15 17.
19. 1, 2 ⊢ -(a⋅(-b)) = (-a)⋅(-b), rmul_compatl_neg 1 12.
20. 1, 2 ⊢ (-a)⋅(-b) = a⋅b, eq_trans_ll 19 18.
21. 1, 2, 3, 4 ⊢ 0 ≤ a⋅b, le_eq_trans 13 20.
rmul_np_np. ⊢ a ∈ ℝ → b ∈ ℝ →
  a ≤ 0 → b ≤ 0 → 0 ≤ a⋅b, subj_intro_iv 21.

Dependencies
The given proof depends on 13 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rle_compat_add, rle_compat_mul, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.