Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ a ≤ b, hypo. 04. 1, 2, 3 ⊢ a - a ≤ b - a, rle_compat_sub 1 2 1 3. 05. 1 ⊢ a - a = 0, rsub_self 1. 06. 1, 2, 3 ⊢ 0 ≤ b - a, eq_subst 5 4, P t ↔ t ≤ b - a. 07. ⊢ 0 ∈ ℝ, calc. 08. 1, 2 ⊢ b - a ∈ ℝ, rsub_closed 2 1. 09. 1, 2, 3 ⊢ 0 - b ≤ (b - a) - b, rle_compat_sub 7 8 2 6. 10. ⊢ b - a = b + -a, rsub_eq. 11. 1 ⊢ -a ∈ ℝ, rneg_closed 1. 12. 1, 2 ⊢ b + -a = -a + b, radd_comm 2 11. 13. 1, 2 ⊢ b - a = -a + b, eq_trans 10 12. 14. 1, 2 ⊢ (b - a) - b = (-a + b) - b, eq_cong 13, f t = t - b. 15. 1, 2 ⊢ (-a + b) - b = -a, radd_cancel 11 2. 16. 1, 2 ⊢ (b - a) - b = -a, eq_trans 14 15. 17. 1, 2, 3 ⊢ 0 - b ≤ -a, le_eq_trans 9 16. 18. 2 ⊢ 0 - b = -b, rsub_from_zero 2. 19. 1, 2, 3 ⊢ -b ≤ -a, eq_subst 18 17, P t ↔ t ≤ -a. rle_neg_swaps. ⊢ a ∈ ℝ → b ∈ ℝ → a ≤ b → -b ≤ -a, subj_intro_iii 19.
Dependencies
The given proof depends on nine axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rle_compat_add, rneg_closed.