Theorem rsub_self

Theorem. rsub_self
a ∈ ℝ → a - a = 0
Proof
01. 1 ⊢ a ∈ ℝ, hypo.
02. ⊢ a - a = a + (-a), rsub_eq.
03. 1 ⊢ a + (-a) = 0, radd_inv 1.
04. 1 ⊢ a - a = 0, eq_trans 2 3.
rsub_self. ⊢ a ∈ ℝ → a - a = 0, subj_intro 4.

Dependencies
The given proof depends on three axioms:
eq_refl, eq_subst, radd_inv.