Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 1, 2 ⊢ a + b ∈ ℝ, radd_closed 1 2. 04. 2 ⊢ -b ∈ ℝ, rneg_closed 2. 05. ⊢ a + b - b = a + b + -b, rsub_eq. 06. 1, 2 ⊢ a + b + -b = a + (b + -b), radd_assoc 1 2 4. 07. 1, 2 ⊢ a + b - b = a + (b + -b), eq_trans 5 6. 08. 2 ⊢ b + -b = 0, radd_inv 2. 09. 1, 2 ⊢ a + b - b = a + 0, eq_subst 8 7, P t ↔ a + b - b = a + t. 10. 1 ⊢ a + 0 = a, radd_neutr 1. 11. 1, 2 ⊢ a + b - b = a, eq_trans 9 10. radd_cancel. ⊢ a ∈ ℝ → b ∈ ℝ → a + b - b = a, subj_intro_ii 11.
Dependencies
The given proof depends on seven axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_inv, radd_neutr, rneg_closed.