Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 2 ⊢ -b ∈ ℝ, rneg_closed 2. 04. 1, 2 ⊢ a + -b ∈ ℝ, radd_closed 1 3. 05. 1, 2 ⊢ a - b ∈ ℝ, eq_subst_rev rsub_eq 4, P t ↔ t ∈ ℝ. rsub_closed. ⊢ a ∈ ℝ → b ∈ ℝ → a - b ∈ ℝ, subj_intro_ii 5.
Dependencies
The given proof depends on four axioms:
eq_refl, eq_subst, radd_closed, rneg_closed.