Proof 01. 1 ⊢ a ≤ b, hypo. 02. 2 ⊢ b = c, hypo. 03. 1, 2 ⊢ a ≤ c, eq_subst 2 1, P t ↔ a ≤ t. le_eq_trans. ⊢ a ≤ b → b = c → a ≤ c, subj_intro_ii 3.
DependenciesThe given proof depends on one axiom:eq_subst.