Theorem rmul_compatl_neg

Theorem. rmul_compatl_neg
a ∈ ℝ → b ∈ ℝ → -(a⋅b) = (-a)⋅b
Proof
01. 1 ⊢ a ∈ ℝ, hypo.
02. 2 ⊢ b ∈ ℝ, hypo.
03. 1, 2 ⊢ -(b⋅a) = b⋅(-a), rmul_compatr_neg 2 1.
04. 1, 2 ⊢ b⋅a = a⋅b, rmul_comm 2 1.
05. 1, 2 ⊢ -(a⋅b) = b⋅(-a), eq_subst 4 3, P t ↔ -t = b⋅(-a).
06. 1 ⊢ (-a) ∈ ℝ, rneg_closed 1.
07. 1, 2 ⊢ b⋅(-a) = (-a)⋅b, rmul_comm 2 6.
08. 1, 2 ⊢ -(a⋅b) = (-a)⋅b, eq_trans 5 7.
rmul_compatl_neg. ⊢ a ∈ ℝ → b ∈ ℝ → -(a⋅b) = (-a)⋅b,
  subj_intro_ii 8.

Dependencies
The given proof depends on 11 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.