Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. ⊢ 0 ∈ ℝ, calc. 04. 1 ⊢ a⋅0 = 0, rmul_rzero 1. 05. 2 ⊢ b + -b = 0, radd_inv 2. 06. 2 ⊢ a⋅(b + -b) = a⋅0, eq_cong 5, f t = a⋅t. 07. 1, 2 ⊢ a⋅(b + -b) = 0, eq_trans 6 4. 08. 2 ⊢ -b ∈ ℝ, rneg_closed 2. 09. 1, 2 ⊢ a⋅(b + -b) = a⋅b + a⋅(-b), rmul_distl_add 1 2 8. 10. 1, 2 ⊢ 0 = a⋅b + a⋅(-b), eq_trans_ll 7 9. 11. 1, 2 ⊢ 0 + -(a⋅b) = a⋅b + a⋅(-b) + -(a⋅b), eq_cong 10, f t = t + -(a⋅b). 12. 1, 2 ⊢ a⋅b ∈ ℝ, rmul_closed 1 2. 13. 1, 2 ⊢ -(a⋅b) ∈ ℝ, rneg_closed 12. 14. 1, 2 ⊢ 0 + -(a⋅b) = -(a⋅b), radd_neutl 13. 15. 1, 2 ⊢ -(a⋅b) = a⋅b + a⋅(-b) + -(a⋅b), eq_trans_ll 14 11. 16. 1, 2 ⊢ a⋅(-b) ∈ ℝ, rmul_closed 1 8. 17. 1, 2 ⊢ a⋅b + a⋅(-b) = a⋅(-b) + a⋅b, radd_comm 12 16. 18. 1, 2 ⊢ -(a⋅b) = a⋅(-b) + a⋅b + -(a⋅b), eq_subst 17 15, P t ↔ -(a⋅b) = t + -(a⋅b). 19. 1, 2 ⊢ a⋅(-b) + a⋅b + -(a⋅b) = a⋅(-b) + (a⋅b + -(a⋅b)), radd_assoc 16 12 13. 20. 1, 2 ⊢ -(a⋅b) = a⋅(-b) + (a⋅b + -(a⋅b)), eq_trans 18 19. 21. 1, 2 ⊢ a⋅b + -(a⋅b) = 0, radd_inv 12. 22. 1, 2 ⊢ -(a⋅b) = a⋅(-b) + 0, eq_subst 21 20, P t ↔ -(a⋅b) = a⋅(-b) + t. 23. 1, 2 ⊢ a⋅(-b) + 0 = a⋅(-b), radd_neutr 16. 24. 1, 2 ⊢ -(a⋅b) = a⋅(-b), eq_trans 22 23. rmul_compatr_neg. ⊢ a ∈ ℝ → b ∈ ℝ → -(a⋅b) = a⋅(-b), subj_intro_ii 24.
Dependencies
The given proof depends on 10 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_distl_add, rneg_closed.