Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. ⊢ 0 ∈ ℝ, calc. 03. 1 ⊢ a + 0 = a, radd_neutr 1. 04. 1 ⊢ 0 + a = a + 0, radd_comm 2 1. 05. 1 ⊢ 0 + a = a, eq_trans 4 3. radd_neutl. ⊢ a ∈ ℝ → 0 + a = a, subj_intro 5.
Dependencies
The given proof depends on four axioms:
eq_refl, eq_subst, radd_comm, radd_neutr.