Theorem rmul_rzero

Theorem. rmul_rzero
a ∈ ℝ → a⋅0 = 0
Proof
01. 1 ⊢ a ∈ ℝ, hypo.
02. ⊢ 0 ∈ ℝ, calc.
03. ⊢ 0 + 0 = 0, radd_neutr 2.
04. ⊢ a⋅(0 + 0) = a⋅0, eq_cong 3, f t = a⋅t.
05. 1 ⊢ a⋅(0 + 0) = a⋅0 + a⋅0, rmul_distl_add 1 2 2.
06. 1 ⊢ a⋅0 + a⋅0 = a⋅0, eq_trans_ll 5 4.
07. 1 ⊢ a⋅0 ∈ ℝ, rmul_closed 1 2.
08. 1 ⊢ a⋅0 + 0 = a⋅0, radd_neutr 7.
09. 1 ⊢ a⋅0 + a⋅0 = a⋅0 + 0, eq_trans_rr 6 8.
10. 1 ⊢ a⋅0 = 0, radd_cancel_ll 7 2 7 9.
rmul_rzero. ⊢ a ∈ ℝ → a⋅0 = 0, subj_intro 10.

Dependencies
The given proof depends on 10 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_distl_add, rneg_closed.