Proof 01. 1 ⊢ a = b, hypo. 02. 2 ⊢ b ≤ c, hypo. 03. 1, 2 ⊢ a ≤ c, eq_subst_rev 1 2, P t ↔ t ≤ c. eq_le_trans. ⊢ a = b → b ≤ c → a ≤ c, subj_intro_ii 3.
DependenciesThe given proof depends on two axioms:eq_refl, eq_subst.