Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 3 ⊢ ¬a ≤ b, hypo. 04. 1, 2 ⊢ a ≤ b ∨ b ≤ a, rle_total 1 2. 05. 1, 2, 3 ⊢ b ≤ a, tollendo_ponens_right 4 3. rle_neg. ⊢ a ∈ ℝ → b ∈ ℝ → ¬a ≤ b → b ≤ a, subj_intro_iii 5.
Dependencies
The given proof depends on two axioms:
efq, rle_total.