Theorem rabs_eqr

Theorem. rabs_eqr
x ∈ ℝ → ¬0 ≤ x → abs x = -x
Proof
01. 1 ⊢ x ∈ ℝ, hypo.
02. 2 ⊢ ¬0 ≤ x, hypo.
03. 1 ⊢ -x ∈ ℝ, rneg_closed 1.
04. 1 ⊢ set (-x), set_intro 3.
05. 1, 2 ⊢ if (0 ≤ x) x (-x) = -x, cond_eqr 4 2.
06. ⊢ abs x = if (0 ≤ x) x (-x), abs_eq.
07. 1, 2 ⊢ abs x = -x, eq_trans 6 5.
rabs_eqr. ⊢ x ∈ ℝ → ¬0 ≤ x → abs x = -x, subj_intro_ii 7.

Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, rneg_closed.