Given ¬A we have (if A then x else y) = y.
Proof let M = {u | A ∧ u = x ∨ ¬A ∧ u = y}. 01. 1 ⊢ set y, hypo. 02. 2 ⊢ ¬A, hypo. 03. 3 ⊢ u ∈ M, hypo. 04. 3 ⊢ A ∧ u = x ∨ ¬A ∧ u = y, comp_elim 3. 05. 5 ⊢ A ∧ u = x, hypo. 06. 5 ⊢ A, conj_eliml 5. 07. 2, 5 ⊢ ⊥, neg_elim 2 6. 08. 2, 5 ⊢ u = y, efq 7. 09. 9 ⊢ ¬A ∧ u = y, hypo. 10. 9 ⊢ u = y, conj_elimr 9. 11. 2, 3 ⊢ u = y, disj_elim 4 8 10. 12. 1, 2, 3 ⊢ u ∈ {y}, sg_intro 1 11. 13. 1, 2 ⊢ u ∈ M → u ∈ {y}, subj_intro 12. 14. 14 ⊢ u ∈ {y}, hypo. 15. 1, 14 ⊢ u = y, sg_elim 1 14. 16. 1, 2, 14 ⊢ ¬A ∧ u = y, conj_intro 2 15. 17. 1, 2, 14 ⊢ A ∧ u = x ∨ ¬A ∧ u = y, disj_intror 16. 18. 14 ⊢ set u, set_intro 14. 19. 1, 2, 14 ⊢ u ∈ M, comp_intro 18 17. 20. 1, 2 ⊢ u ∈ {y} → u ∈ M, subj_intro 19. 21. 1, 2 ⊢ u ∈ M ↔ u ∈ {y}, bij_intro 13 20. 22. 1, 2 ⊢ ∀u. u ∈ M ↔ u ∈ {y}, uq_intro 21. 23. 1, 2 ⊢ M = {y}, ext 22. 24. 1, 2 ⊢ ⋂M = ⋂{y}, eq_cong 23, f t = ⋂t. 25. 1 ⊢ ⋂{y} = y, Intersection_sg 1. 26. 1, 2 ⊢ ⋂M = y, eq_trans 24 25. 27. 1, 2 ⊢ if A x y = y, eq_trans cond_eq 26. cond_eqr. ⊢ set y → ¬A → if A x y = y, subj_intro_ii 27.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.