Theorem rmul_cancel_neg

Theorem. rmul_cancel_neg
a ∈ ℝ → b ∈ ℝ → (-a)⋅(-b) = a⋅b
Proof
01. 1 ⊢ a ∈ ℝ, hypo.
02. 2 ⊢ b ∈ ℝ, hypo.
03. 1, 2 ⊢ -(a⋅b) = (-a)⋅b, rmul_compatl_neg 1 2.
04. 1, 2 ⊢ -(-(a⋅b)) = -((-a)⋅b), eq_cong 3, f t = -t.
05. 1 ⊢ -a ∈ ℝ, rneg_closed 1.
06. 1, 2 ⊢ -((-a)⋅b) = (-a)⋅(-b), rmul_compatr_neg 5 2.
07. 1, 2 ⊢ -(-(a⋅b)) = (-a)⋅(-b), eq_trans 4 6.
08. 1, 2 ⊢ a⋅b ∈ ℝ, rmul_closed 1 2.
09. 1, 2 ⊢ -(-(a⋅b)) = a⋅b, rneg_involution 8.
10. 1, 2 ⊢ (-a)⋅(-b) = -(-(a⋅b)), eq_symm 7.
11. 1, 2 ⊢ (-a)⋅(-b) = a⋅b, eq_trans 10 9.
rmul_cancel_neg. ⊢ a ∈ ℝ → b ∈ ℝ →
  (-a)⋅(-b) = a⋅b, subj_intro_ii 11.

Dependencies
The given proof depends on 11 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_comm, rmul_distl_add, rneg_closed.