Proof 01. 1 ⊢ A ⊆ X, hypo. 02. 2 ⊢ x ∈ X \ A, hypo. 03. ⊢ (x, ∅) = (x, ∅), eq_refl. 04. 2 ⊢ x ∈ X \ A ∧ (x, ∅) = (x, ∅), conj_intro 2 3. 05. 2 ⊢ ∃u. u ∈ X \ A ∧ (x, ∅) = (u, ∅), ex_intro 4. 06. 2 ⊢ set x, set_intro 2. 07. ⊢ set ∅, empty_set_is_set. 08. 2 ⊢ set (x, ∅), set_pair 6 7. 09. 2 ⊢ (x, ∅) ∈ {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)}, comp_intro 8 5, P t ↔ (∃x. x ∈ X \ A ∧ t = (x, ∅)). 10. 2 ⊢ (x, ∅) ∈ {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)} ∪ {t | ∃x. x ∈ A ∧ t = (x, {∅})}, union_introl 9. 11. 2 ⊢ (x, ∅) ∈ χ A X, eq_subst_rev indicator_eq 10, P u ↔ (x, ∅) ∈ u. 12. 1 ⊢ map (χ A X) X {∅, {∅}}, indicator_is_map 1. 13. 1, 2 ⊢ ∅ = app (χ A X) x, map_app_intro 12 11. 14. 1, 2 ⊢ app (χ A X) x = ∅, eq_symm 13. indicator_app_is_zero. ⊢ A ⊆ X → x ∈ X \ A → app (χ A X) x = ∅, subj_intro_ii 14.
Dependencies
The given proof depends on 10 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, pairing, subset, union.