Proof 01. ⊢ set ∅, empty_set_is_set. 02. ⊢ set {∅}, set_sg 1. 03. ⊢ ∅ ∈ {∅, {∅}}, in21 1. 04. ⊢ {∅} ∈ {∅, {∅}}, in22 2. 05. 5 ⊢ x ∈ X \ A, hypo. 06. 6 ⊢ x ∈ A, hypo. 07. 5 ⊢ ∅ ∈ {∅, {∅}}, wk 3. 08. 6 ⊢ {∅} ∈ {∅, {∅}}, wk 4. 09. ⊢ x ∈ X \ A → ∅ ∈ {∅, {∅}}, subj_intro 7. 10. ⊢ x ∈ A → {∅} ∈ {∅, {∅}}, subj_intro 8. 11. ⊢ ∀x. x ∈ X \ A → ∅ ∈ {∅, {∅}}, uq_intro 9. 12. ⊢ ∀x. x ∈ A → {∅} ∈ {∅, {∅}}, uq_intro 10. 13. ⊢ {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)} = {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)}, eq_refl. 14. ⊢ {t | ∃x. x ∈ A ∧ t = (x, {∅})} = {t | ∃x. x ∈ A ∧ t = (x, {∅})}, eq_refl. 15. ⊢ map {t | ∃x. x ∈ X \ A ∧ t = (x, ∅)} (X \ A) {∅, {∅}}, map_from_term 13 11. 16. ⊢ map {t | ∃x. x ∈ A ∧ t = (x, {∅})} A {∅, {∅}}, map_from_term 14 12. 17. ⊢ A ∩ (X \ A) = ∅, intersection_rel_compl. 18. ⊢ (X \ A) ∩ A = A ∩ (X \ A), intersection_comm. 19. ⊢ (X \ A) ∩ A = ∅, eq_trans 18 17. 20. ⊢ map ({t | ∃x. x ∈ X \ A ∧ t = (x, ∅)} ∪ {t | ∃x. x ∈ A ∧ t = (x, {∅})}) ((X \ A) ∪ A) {∅, {∅}}, map_union_eq_rngs 15 16 19. 21. ⊢ map (χ A X) ((X \ A) ∪ A) {∅, {∅}}, eq_subst_rev indicator_eq 20, P t ↔ map t ((X \ A) ∪ A) {∅, {∅}}. 22. 22 ⊢ A ⊆ X, hypo. 23. 22 ⊢ (X \ A) ∪ A = X, diff_union_subclass 22. 24. 22 ⊢ map (χ A X) X {∅, {∅}}, eq_subst 23 21, P t ↔ map (χ A X) t {∅, {∅}}. indicator_is_map. ⊢ A ⊆ X → map (χ A X) X {∅, {∅}}, subj_intro 24.
Dependencies
The given proof depends on 10 axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, pairing, subset, union.