Theorem intersection_comm

Theorem. intersection_comm
A ∩ B = B ∩ A
Proof
01. 1 ⊢ x ∈ A ∩ B, hypo.
02. 1 ⊢ x ∈ A, intersection_eliml 1.
03. 1 ⊢ x ∈ B, intersection_elimr 1.
04. 1 ⊢ x ∈ B ∩ A, intersection_intro 3 2.
05. ⊢ x ∈ A ∩ B → x ∈ B ∩ A, subj_intro 4.
06. ⊢ x ∈ B ∩ A → x ∈ A ∩ B, 5.
07. ⊢ x ∈ A ∩ B ↔ x ∈ B ∩ A, bij_intro 5 6.
08. ⊢ ∀x. x ∈ A ∩ B ↔ x ∈ B ∩ A, uq_intro 7.
intersection_comm. ⊢ A ∩ B = B ∩ A, ext 8.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.