Theorem diff_union_subclass

Theorem. diff_union_subclass
A ⊆ X → (X \ A) ∪ A = X
Proof
01. 1 ⊢ A ⊆ X, hypo.
02. 1 ⊢ A ∪ X = X, union_from_incl 1.
03. ⊢ X ∪ A = A ∪ X, union_comm.
04. 1 ⊢ X ∪ A = X, eq_trans 3 2.
05. ⊢ (X \ A) ∪ A = X ∪ A, diff_union.
06. 1 ⊢ (X \ A) ∪ A = X, eq_trans 5 4.
diff_union_subclass. ⊢ A ⊆ X → (X \ A) ∪ A = X, subj_intro 6.

Dependencies
The given proof depends on five axioms:
comp, eq_refl, eq_subst, ext, lem.