Theorem union_from_incl

Theorem. union_from_incl
A ⊆ B → A ∪ B = B
Proof
01. 1 ⊢ A ⊆ B, hypo.
02. 2 ⊢ x ∈ A ∪ B, hypo.
03. 2 ⊢ x ∈ A ∨ x ∈ B, union_elim 2.
04. 4 ⊢ x ∈ A, hypo.
05. 1, 4 ⊢ x ∈ B, incl_elim 1 4.
06. 6 ⊢ x ∈ B, hypo.
07. 1, 2 ⊢ x ∈ B, disj_elim 3 5 6.
08. 1 ⊢ x ∈ A ∪ B → x ∈ B, subj_intro 7.
09. 1 ⊢ ∀x. x ∈ A ∪ B → x ∈ B, uq_intro 8.
10. 1 ⊢ A ∪ B ⊆ B, incl_intro 9.
11. ⊢ B ⊆ A ∪ B, union_incl_right.
12. 1 ⊢ A ∪ B = B, incl_antisym 10 11.
union_from_incl. ⊢ A ⊆ B → A ∪ B = B, subj_intro 12.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.