Theorem union_comm

Theorem. union_comm
A ∪ B = B ∪ A
Proof
01. 1 ⊢ x ∈ A ∪ B, hypo.
02. 1 ⊢ x ∈ A ∨ x ∈ B, union_elim 1.
03. 3 ⊢ x ∈ A, hypo.
04. 3 ⊢ x ∈ B ∪ A, union_intror 3.
05. 5 ⊢ x ∈ B, hypo.
06. 5 ⊢ x ∈ B ∪ A, union_introl 5.
07. 1 ⊢ x ∈ B ∪ A, disj_elim 2 4 6.
08. ⊢ x ∈ A ∪ B → x ∈ B ∪ A, subj_intro 7.
09. ⊢ x ∈ B ∪ A → x ∈ A ∪ B, 8.
10. ⊢ x ∈ A ∪ B ↔ x ∈ B ∪ A, bij_intro 8 9.
11. ⊢ ∀x. x ∈ A ∪ B ↔ x ∈ B ∪ A, uq_intro 10.
union_comm. ⊢ A ∪ B = B ∪ A, ext 11.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.