Theorem intersection_rel_compl

Theorem. intersection_rel_compl
A ∩ (B \ A) = ∅
Proof
01. 1 ⊢ x ∈ A ∩ (B \ A), hypo.
02. 1 ⊢ x ∈ A, intersection_eliml 1.
03. 1 ⊢ x ∈ B \ A, intersection_elimr 1.
04. 1 ⊢ ¬x ∈ A, diff_elimr 3.
05. 1 ⊢ ⊥, neg_elim 4 2.
06. 1 ⊢ x ∈ ∅, efq 5.
07. ⊢ x ∈ A ∩ (B \ A) → x ∈ ∅, subj_intro 6.
08. ⊢ ∀x. x ∈ A ∩ (B \ A) → x ∈ ∅, uq_intro 7.
09. ⊢ A ∩ (B \ A) ⊆ ∅, incl_intro 8.
10. ⊢ ∅ ⊆ A ∩ (B \ A), empty_set_is_least.
intersection_rel_compl. ⊢ A ∩ (B \ A) = ∅, incl_antisym 9 10.

Dependencies
The given proof depends on four axioms:
comp, efq, eq_subst, ext.